A Local Monotonicity Formula for an Inhomogenous Singular Perturbation Problem and Applications

نویسنده

  • CLAUDIA LEDERMAN
چکیده

In this paper we prove a local monotonicity formula for solutions to an inhomogeneous singularly perturbed diffusion problem of interest in combustion. This type of monotonicity formula has proved to be very useful for the study of the regularity of limits u of solutions of the singular perturbation problem and of ∂{u > 0}, in the global homogeneous case. As a consequence of this formula we prove that u has an asymptotic development at every point in ∂{u > 0} where there is a nonhorizontal tangent ball. These type of developments have been essential for the proof of the regularity of ∂{u > 0} for Bernoulli and Stefan free boundary problems. We also present applications of our results to the study of ∂{u > 0} in the stationary case including, in particular, its regularity in the case of energy minimizers. We present as well a regularity result for travelling waves of a combustion model that relies on our monotonicity formula and its consequences. The fact that our results hold for the inhomogeneous problem allows a very wide applicability. In fact, they may be applied to problems with nonlocal diffusion and/or transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

INVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.

متن کامل

Sum Formula for Maximal Abstract Monotonicity and Abstract Rockafellar’s Surjectivity Theorem

In this paper, we present an example in which the sum of two maximal abstract monotone operators is maximal. Also, we shall show that the necessary condition for Rockafellar’s surjectivity which was obtained in ([19], Theorem 4.3) can be sufficient.

متن کامل

Near-Optimal Controls of a Fuel Cell Coupled with Reformer using Singular Perturbation methods

A singularly perturbed model is proposed for a system comprised of a PEM Fuel Cell(PEM-FC) with Natural Gas Hydrogen Reformer (NG-HR). This eighteenth order system is decomposedinto slow and fast lower order subsystems using singular perturbation techniques that provides tools forseparation and order reduction. Then, three different types of controllers, namely an optimal full-order,a near-opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006